Solving Variational Inequality Problems with Linear Constraints Based on a Novel Recurrent Neural Network

نویسندگان

  • Youshen Xia
  • Jun Wang
چکیده

Variational inequalities with linear inequality constraints are widely used in constrained optimization and engineering problems. By extending a new recurrent neural network [14], this paper presents a recurrent neural network for solving variational inequalities with general linear constraints in real time. The proposed neural network has onelayer projection structure and is amenable to parallel implementation. As a special case, the proposed neural network can include two existing recurrent neural networks for solving convex optimization problems and monotone variational inequality problems with box constraints, respectively. The proposed neural network is stable in the sense of Lyapunov and globally convergent to the solution under a monotone condition of the nonlinear mapping without the Lipschitz condition. Illustrative examples show that the proposed neural network is effective for solving this class of variational inequality problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

MATLAB Simulink modeling and simulation of LVI-based primal-dual neural network for solving linear and quadratic programs

In view of parallel-processing nature and circuit-implementation convenience, recurrent neural networks are often employed to solve optimization problems. Recently, a primal-dual neural network based on linear variational inequalities (LVI) was developed by Zhang et al. for the online solution of linear-programming (LP) and quadratic-programming (QP) problems simultaneously subject to equality,...

متن کامل

Three Global Exponential Convergence Results of the GPNN for Solving Generalized Linear Variational Inequalities

The general projection neural network (GPNN) is a versatile recurrent neural network model capable of solving a variety of optimization problems and variational inequalities. In a recent article [IEEE Trans. Neural Netw., 18(6), 1697-1708, 2007], the linear case of GPNN was studied extensively from the viewpoint of stability analysis, and it was utilized to solve the generalized linear variatio...

متن کامل

A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems

In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007